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1. Introduction

The topic of six dimensional supersymmetrical sigma-models [1, 2] is curiously one that has

hardly been explored in the literature. Certainly one possible explanation for this is the ex-

pectation that no fundamentally new features will emerge. For example, since by reduction

to 4D they become N = 2 models, the already extensive literature on the latter must surely

constitute an indirect study of these models and has already illustrated all structures of the

6D theories. However, this raises questions that always occur when discussions of compact-

ifications are present in supersymmetrical theories. Are there features of the compactified

theories that only occur in the lower dimension? How are the features that only permitted

in the 6D theory to be disentangled from those that are present only in the compactified

theory? Moreover, with the topic of ‘little strings’ [3] having been discovered, one would

also prefer a study of 6D nonlinear sigma-model theory in an effort to find whether there are

features of the former that are encoded in the structure of the latter. Finally, these studies

of 6D models in terms of 4D, N = 1 (or more generally higher D) models [4]–[6] opens

up an arena for the study of the corresponding realizations of superconformal symmetry,

supergravity and perhaps most fascinating of all, superstring/M-theory.

In previous work [7] we have probed the structure of the 6D hypermultiplet as viewed

by the tool of a formulation that only realizes the full 6D Lorentz group fully on-shell but
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permits the realization of 4D, N = 1 supersymmetry off-shell. Thus, the present work

naturally follows onto this previous set of investigations. A summary of this work follows.

In the second chapter, the formulation of this class of models in terms of pair of

chiral multiplets (CC formulation) is given. It is shown how the condition of on-shell

Lorentz invariance naturally leads to the condition that the geometry of the nonlinear

sigma-models must be that of a hyper-Kähler manifold [8]. The determinant of the hyper-

Kähler metric is equal to the square modulus of the determinant of the exterior derivative

of a holomorphic one-form which is related, in our 4D, N = 1 superspace fomulation, to the

extra-dimensions. This condition results to be equivalent to the Monge-Ampère equation

and implies Ricci flatness. The triplet of complex structures that possess a quaternionic

algebra is identified and related to the exterior derivative of the holomorphic one-form.

With a correct definition of how to obtain the 6D component fields from the 4D ones, the

on-shell action is found to take the expected form: Kinetic energies for the spin-zero and

spin-1/2 states together with a quartic fermionic interaction that involves the Riemann

tensor for the manifold geometry.

In the third chapter, an exploration of the origin of such models arising from projective

superspace [9]–[15], [7] is undertaken. ‘Projectivized’ superderivatives are defined in the

usual manner. This is followed by a review of the polar formulation of hypermultiplets and

the discussion of sigma-model actions that can be introduced for these. As an example of

the general structure of these 6D sigma-models we consider the particular case of tangent

bundles of Kähler manifolds. Although no explicit results are given for the O(2n) 6D N
= (1, 0) multiplets, it is noted that the extension to the 6D arena is possible.

In the fourth chapter, we analyze the very difficult problem of deriving the geometry

that arises in the case of directly using the CNM (chiral/non-minimal) [16]–[19] formulation

without the starting point of projective superspace. The starting point for this mimics the

techniques used in chapter two but includes now the complication to allow both chiral and

complex linear superfields [20, 21] (i.e. non-minimal scalar multiplets) ab initio in the

analysis. It is noted that whenever the number of nonminimal multiplets is less than the

number of chiral multiplet, a subsector of the theory must take the form given in chapter

two. Full expressions for the bosonic terms in the action, prior to removal of auxiliary

fields are given. Imposing 6D Lorentz invariance, imposes a condition on the generalized

potential in the model that is very similar to that found in the pure CC case. However, no

simple solution to the general case of this system are obtainable by our present methods.

An explicit solution is presented in a special case where an explicit proof is obtained that

CNM geometry is a hyper-Kähler one.

In the fifth chapter, a discussion of the duality between the 6D CC and CNM formula-

tions is undertaken. Once again the analysis of the general case is hampered by the sheer

complexity of the problem. Subject to a special choice of a Darboux sympletic atlas, the

results indicate no obstructions to carrying out such duality maps.

In the sixth chapter, there is presented an indirect study of the CNM sigma- models

via the use of duality with respect to CC models. This allows a direct inference of the

constraints of the CNM model by using the duality of their correspondence to objects that

occur in the CC approach.
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We include a chapter with our conclusions and include two appendices. The first

appendix is used to state the conventions of the paper. The second contains explicit

calculations of the actions that involve the CNM formulation to obtain component level

results.

2. 6D, N = (1, 0) CC sigma-models

We formulate six–dimensional nonlinear sigma–models using a formalism which keeps four

dimensional N = 1 supersymmetry1 manifest.

The 6D, N = (1, 0) hypermultiplet can be described in terms of two chiral multiplets [5,

6] (CC formulation) or one chiral multiplet and one complex linear multiplet [7] (CNM

formulation). We start considering the CC formulation.

The action which describes the free dynamics of a 6D, N = (1, 0) CC hypermulti-

plet [5 – 7] is

SCC =

∫
d6x d4θ

[
Φ+ Φ+ + Φ− Φ−

]
+

∫
d6x d2θ

[
Φ+ ∂ Φ−

]

+

∫
d6x d2θ

[
Φ+ ∂ Φ−

]
, (2.1)

where

z ≡ 1

2
(x4 + ix5) , ∂ ≡ ∂

∂z
= ∂4 − i∂5 ;

z ≡ 1

2
(x4 − ix5) , ∂ ≡ ∂

∂z
= ∂4 + i∂5 . (2.2)

The action (2.1) is explicitly invariant under Sl(2,C)×U(1) ' SO(1, 3)×SO(2) ⊂SO(1, 5),

a proper subgroup of the 6D Lorentz group, and it has off–shell 4D, N = 1 SUSY. The

U(1) ' SO(2) is the subgroup of rotations on the (4, 5)-plane in 6D Minkowski space and

acts as phase transformations on ∂ → eiφ∂, ∂ → e−iφ∂. The (anti)chiral superfields of

the hypermultiplet are assumed to be neutral under the U(1) subgroup since the bosonic

physical fields A± = Φ±| and A± = Φ±| must be neutral (i.e. scalars with respect to the

6D Lorentz group). From the invariance of the holomorphic2 terms in (2.1), it follows that

the grassmannian differentials transform as dθα → e−
i
2
φdθα, dθα̇ → e

i
2
φdθα̇.

Once integrated out, the auxiliary fields in (2.1) lead to a resulting action which has

linearly realized 6D Lorentz invariance and is on–shell 6D, N = (1, 0) supersymmetric.

We now extend this analysis to 6D nonlinear sigma–models and find restrictions on

the target space geometry induced by the request for the model to be 6D covariant and

supersymmetric.

We start generalizing the action (2.1) to a system of n decoupled CC hypermultiplets

describing a flat complex 2n–dimensional target space. Defining Ψa = (ΦI
+,Φ

i
−) we write

S =

∫
d6x

[∫
d4θΨ

a
δabΨ

b +
1

2

∫
d2θΨa Ωab ∂Ψb +

1

2

∫
d2θΨ

a
Ωab ∂Ψ

b

]
, (2.3)

1We use the conventions of [20] and [7].
2We use ’ holomorphic terms’ instead of ’superpotential terms’ since they lead to the appearance

of derivatives of the propagating bosons.
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where

δab =

(
δIJ 0

0 δij

)
Ωab = Ωab =

(
0 δIj
−δiJ 0

)
. (2.4)

To extend non–trivially the action (2.3) to a curved target space we make the following

ansatz

∫
d6x

[∫
d4θ K

(
Ψa,Ψ

a
)

+

∫
d2θ Qa

(
Ψb
)
∂Ψa +

∫
d2θ Qa

(
Ψ
b
)
∂Ψ

a

]
. (2.5)

Here the functions Qa (Qa) are (anti)holomorphic in the (anti)chiral superfields Ψa (Ψ
a
).

The expression (2.5) is the most general ansatz for an action local in the physical fields

which generalizes (2.3) and still has the off–shell symmetries of the flat case, i.e. 4D SUSY

and the Sl(2,C)×U(1) invariance.

A feature of note regarding (2.5) is the appearance of Qa(Ψ
b) in the extra–dimensions

derivatives holomorphic term. This quantity has an interpretation as the connection of

a U(1)-bundle. This U(1)-bundle is not necessarily related to the one that is part of

Sl(2,C)×U(1) invariance. In fact, the U(1)-bundle for which Qa(Ψ
b) is the connection is a

bundle defined over the manifold. The fact that Qa(Ψ
b) appears as it does in (2.5) implies

that it is ambiguous with respect the gauge transformation

Qa(Ψ
b) → Qa(Ψ

b) +
∂

∂Ψa
T (Ψb) , (2.6)

since the purely holomorphic terms are only changed by surface terms with regard to this

redefinition. This invariance will be seen at the level of the action by the result that this

U(1)-bundle connection will only appear in quantities via its exterior derivative.

It is important to note that the rigid U(1) invariance and as well the local manifold

U(1)-bundle invariance, both fix the form of the the latter two terms in (2.5) and exclude

the possibility to have terms like
∫
d2θQ̃a∂Ψa +

∫
d2θQ̃a ∂Ψ

a
. In analogy with the flat

space [7], such contributions would be the only possible terms admitted if we were to

impose opposite U(1) phase transformations on the grassmanian coordinates of the 4D,

N = 1 superspace and would give N = (0, 1) CC sigma–models. In the rest of the paper

we concentrate only on the (1, 0) case. As noted in [7], the (0, 1) case can be recovered by

simply doing the change ∂ ↔ −∂ wherever ∂ and ∂ appear.

Reduced in components the action (2.5) reads

∫
d6x

{
Kab

[
− 1

2
∂αα̇A

b
∂αα̇A

a + F
b
F a − i

2

(
ψ
b
α̇∂

αα̇ψaα + ψaα∂
αα̇ψ

b
α̇

)]

+
1

2
Kabc

[
F
c
ψaαψbα + i(∂αα̇Ab)ψaαψ

c
α̇

]

+
1

2
Kcab

[
F cψ

aα̇
ψ
b
α̇ − i(∂αα̇A

b
)ψcαψ

a
α̇

]

+Qa(b)ψ
bα∂ ψaα +

(
Qb(a) −Qa(b)

)
F a∂Ab +

1

2
Qa(bc) (∂Aa)ψbαψcα

+Qa(b)ψ
bα̇
∂ ψ

a
α̇ +

(
Qb(a) −Qa(b)

)
F
a
∂ A

b
+

1

2
Qa (bc)(∂ A

a
)ψ

bα̇
ψ
c
α̇
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+
1

4
Kabab ψ

aαψbαψ
aα̇
ψ
b
α̇

}
, (2.7)

where we have defined the tensors

Ka1 ···apb1···bq ≡
∂p+qK(A,A)

∂Aa1 · · · ∂Aap∂Ab1 · · · ∂Abq
, (2.8)

Qa(b1···br) ≡
∂rQa(A)

∂Ab1 · · · ∂Abr , Qa(b1···br) ≡
∂rQa(A)

∂A
b1 · · · ∂Abr

. (2.9)

The equations of motion for the auxiliary F–fields are algebraic as in the free case

F a = −Kab

[
1

2
Kcdb ψ

cαψdα +
(
Qc(b) −Qb(c)

)
∂ A

c

]
, (2.10)

F
a

= −Kba

[
1

2
Kbcd ψ

cα̇
ψ
d
α̇ +

(
Qc(b) −Qb(c)

)
∂Ac

]
, (2.11)

where Kab is the inverse of the Kähler metric Kab, KacK
bc = δba andKcaK

cb = δba. Inserting

the previous relations in (2.7) we find the action for the physical component fields. We

divide it into three pieces with zero, two and four fermionic fields, respectively

S0f =

∫
d6x

[
− 1

2
Kaa ∂

αα̇A
a
∂αα̇A

a −Kaa
(
Qb(a) −Qa(b)

)(
Qb(a) −Qa(b)

)
∂ A

b
∂Ab

]
,

(2.12)

S2f = −1

2

∫
d6x

[
Kaa ψ

a
α̇i∂

αα̇ψaα +Kabb

(
i∂αα̇Aa

)
ψ
b
α̇ψ

b
α +

(
Qb(a) −Qa(b)

)
ψbα∂ ψaα

+KaaKbca

(
Qd(a) −Qa(d)

)(
∂Ad

)
ψbαψcα

+
(
Qb(ac) −Qa(bc)

)(
∂Aa

)
ψbαψcα + {h. c. }

]
, (2.13)

S4f =
1

4

∫
d6x

[(
Kabab − KccKabcKcab

)
ψaαψbαψ

aα̇
ψ
b
α̇

]
. (2.14)

In these actions the structures of the Kähler geometry as required by manifest 4D, N = 1

SUSY appear: In (2.13), (2.14), besides the metric, we recognize the connections and the

curvature tensor of the Kähler manifold

Γabc = KadKbcd , Γa
bc

= KdaKdbc ,

Rabcd = Kacbd − KrsKacsKrbd . (2.15)

Extra constraints on the geometrical structures come from requiring that after integration

on the auxiliary F–fields, the resulting action is 6D Lorentz invariant. In particular the

actions (2.12), (2.13), (2.14) must be separately Lorentz invariant.

– 5 –
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Bosonic action We start imposing 6D Lorentz symmetry for the pure bosonic ac-

tion (2.12). In order to have manifest, linearly realized 6D Lorentz invariance we should

be able to write it as

−
∫
d6x

[
Kaa ∂

µA
a
∂µA

a

]
= −1

2

∫
d6x

[
Kaa

(
∂αα̇A

a
∂αα̇A

a + ∂ A
a
∂Aa + ∂A

a
∂Aa

)]
.

(2.16)

To compare the action (2.12) with (2.16) we re-write (2.12) as

S0f = −1

2

∫
d6x

[
Kaa ∂

αα̇A
a
∂αα̇A

a + K̃aa

(
∂ A

a
∂Aa + ∂A

a
∂Aa

)

+ K̃aa

(
∂ A

a
∂Aa − ∂Aa∂Aa

) ]
, (2.17)

where we have defined

K̃aā ≡
(
Qb(a) −Qa(b)

)
Kbb

(
Qb(a) −Qa(b)

)
≡ −ΩabK

bb Ωba , (2.18)

and

Ωab ≡
(
Qb(a) −Qa(b)

)
, Ωab ≡

(
Qb(a) −Qa(b)

)
. (2.19)

Matching (2.17) with (2.16) requires

Kaa = K̃aa = −ΩabK
bb Ωba . (2.20)

The second line of (2.17) then becomes

−1

2

∫
d6x
(
Kaa ∂ A

a
∂Aa +Kab ∂A

b∂Aa −Kab ∂A
b∂Aa −Kaa ∂A

a
∂Aa

)

= −1

2

∫
d6x
[
∂ (Ka∂A

a )− ∂
(
Ka∂A

a
) ]

, (2.21)

and it is explicitly a total derivative in six dimensions.

An interesting observation regarding the total derivative term is that if we were to

work in 5D [22] the second line of (2.17) would be identically zero, even without imposing

Kaa = K̃aa since ∂ = ∂ in five dimensions.

To summarize, in order to have 6D Lorentz invariance of (2.12) we need only require

the constraint (2.20) for the Kähler metric. Note that if we interpret Qa as a holomorphic

1-form connection for a U(1) bundle then clearly the quantity Ωab is its exterior derivative

(i.e. its field strength - U(1) curvature).

We now study the consequences of the constraint (2.20). Taking the determinant of

both sides of (2.20) we have an expression that relates the determinant of the Kähler metric

to the exterior derivative of the holomorphic one-form

detK = det Ω detK−1 det Ω =⇒
[

detK
]2

= det Ω det Ω = | det Ω |2

=⇒ Tr[ln(K) ] = 1
2

[
Tr[ ln(Ω) ] + Tr[ ln(Ω) ]

]
. (2.22)

– 6 –
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These equations can be re-written in terms of the Kähler potential as a nonlinear d-th

order differential equation

[det(∂a∂bK) ] = | det Ω | (2.23)

1
d! ε

a1 a2... ad εb1 b2 ... bd (∂ai∂biK) · · · (∂ai∂bi K) = | det Ω | , (2.24)

where d is the number of the chiral doublets present in the action. After the introduction

of a new variable K(Φ, Φ) via the equation K = ΦaΦā + K this leads to a nonlinear

differential equation for K,

det( δa b̄ + ∂a∂bK) = | det Ω | . (2.25)

Since our manifold is Kähler we can express the Ricci tensor in terms of the determinant

of the metric as Rab = ∂a∂b [ ln(detK)] and from (2.22) it follows

Rab =
1

2
∂a∂b [ ln (det Ω) + ln (det Ω)] = 0 . (2.26)

Our manifold is then Ricci flat.

We note that, through a holomorphic change of coordinates, the det Ω can be always

chosen to be unimodular. Then the previous description (2.22)–(2.25) is equivalent to

Monge-Ampère equation det (∂a∂bK) = 1 which characterizes the Ricci flatness of our

target space.

It is known that relations (2.19), (2.20) imply moreover the stronger constraint on the

target space geometry to be hyper-Kähler [23]. In fact, we introduce

Ωac Ωcb = δab , Ω
ac

Ωcb = δa
b

(2.27)

and define

Ωa
b ≡ Kca Ωcb = −Ω

ac
Kbc , (2.28)

Ωa
b
≡ Kac Ωcb = −ΩacKcb , (2.29)

satisfying

Ωa
c Ωc

b = − δab , Ωa
c Ωc

b
= − δa

b
. (2.30)

It then follows

∂a Ωbc = Kabb Ωb
c − Kacb Ωb

b =⇒ ∇a Ωbc = 0 , (2.31)

∂a Ωbc = Kbab Ωb
c − Kbac Ωb

b
=⇒ ∇a Ωbc = 0 , (2.32)

and Ωab, Ωab, Ωa
b

and Ωa
b are covariantly constant. A triplet of covariantly constant

complex structures can be then introduced as in [23]–[26]

J1 =

(
0 Ωa

b

Ωa
b 0

)
, J2 =

(
0 iΩa

b

−iΩa
b 0

)
, J3 =

(
iδab 0

0 −iδa
b

)
. (2.33)

which define the quaternionic structure of an hyper-Kähler manifold

Jµ Jν = − δµν + εµνρ Jρ , (2.34)

Therefore, the request for the on–shell bosonic action to be 6D Lorentz invariant implies

the target space to be hyper-Kähler.

– 7 –



J
H
E
P
0
9
(
2
0
0
6
)
0
0
6

Fermionic actions We now investigate the Lorentz invariance of the fermionic ac-

tions (2.13, 2.14). As we are going to prove, the hyper-Kähler condition for the target

manifold is sufficient to automatically provide 6D Lorentz invariance also for the fermionic

actions, once properly defined the 6D, (1, 0) spinors3 as obtained from the 4D spinor com-

ponents of the (anti)chiral superfields (Ψ
a
) Ψa. The correct choice of 6D spinors is the one

suggested by the dimensional reduction of [2] and used also in the recent five dimensional

analogue of our investigation [22]

Ψaα̃ =




ψaα

Ωa
b
ψ
bα̇


 , Ψ

aα̃
=

(−Ωa
bψ

bα

ψ
aα̇

)
= −Ωa

bΨ
bα̃ . (2.35)

Note that this is also the choice that gives a symplectic Majorana–Weyl structure to the

6D spinor. In fact, (Ψaα̃)∗ = Ψ
a ˙̃α

= C ˙̃α
β̃

Ωa
bΨ

bβ̃ where Cα̃ ˙̃
β
C

˙̃β
γ̃ = −δα̃ γ̃ .

Now, using the following relations due to the hyper-Kähler structure

Raabb Ωb
c = ∂a

(
Γd
ab

Ωdc

)
= ∂a

(
Γdac Ωdb

)
= Raabc Ωb

b
, (2.36)

Raabb Ωb
c = ∂a

(
Γdab Ωdc

)
= ∂a

(
Γdac Ωdb

)
= Raacb Ωb

b , (2.37)

we find that the two and four fermions actions (2.13, 2.14) can be re-written as

S2f = −1

2

∫
d6xKaa

[
ψ
a
α̇ i∂

αα̇ψaα + Γabc

(
i∂αα̇Ac

)
ψ
b
α̇ψ

b
α

+ Ωa
b ψ

bα∂ψaα + Γacd

(
∂Ad

)
Ωa

b ψ
bαψcα + {h. c. }

]

=
1

4

∫
d6xKaa

[
Ψ
aα̃
i∂α̃β̃Ψaβ̃ + Ψ

aα̃
Γabc

(
i∂α̃β̃A

b
)

Ψcβ̃

+ Ψaβ̃i∂α̃β̃Ψ
aα̃

+ Ψaβ̃Γa
bc

(
i∂α̃β̃A

b
)

Ψ
cα̃

]
, (2.38)

S4f = − 1

24

∫
d6x Raabb εα̃β̃γ̃δ̃ Ψaα̃ Ψbβ̃ Ψ

aγ̃
Ψ
bδ̃

. (2.39)

and Lorentz invariance become manifest. We have then found that 6D Lorentz invariance

requires the target space to be hyper-Kähler. Under this condition, the sum of actions

(S0f + S2f + S4f ) is also on–shell N = (1, 0) supersymmetric [2].

Our sigma–model, being written in 4D N = 1 superspace, has manifest 4D supersym-

metry. When the hyper-Kähler conditions are satisfied, the action is also on–shell invariant

under the following transformations

δη2Ψa = D
2
[

ΩabKb (θαη2α + θ
α̇
η2α̇)

]
, δη2Ψ

a
= D2

[
Ω
ab
Kb (θαη2α + θ

α̇
η2α̇)

]
. (2.40)

The 6D, N = (1, 0) algebra, once written in a 4D formalism, is equivalent to a 4D, N = 2

SUSY algebra with a complex central charge [7]. The transformations (2.40) give exactly

3for our (1, 0) spinor conventions see [7].
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the second supersymmetry of the 4D, N = 2 algebra. In fact, it can be seen that the

commutator of two transformations [δη2 , δζ2 ]Ψa closes off–shell, and the commutator of

a transformation (2.40) with a 4D N = 1 transformation closes on–shell as [δη2 , δζ1 ]Ψa =

∂Ψa(ζα1 η2α+ζ
α̇
1 η2α̇) and [δη2 , δζ1 ]Ψ

a
= ∂Ψ

a
(ζα1 η2α+ζ

α̇
1 η2α̇) on the extra dimensions. These

properties are the natural extension to six dimensions of what happens for five–dimensional

CC sigma–models [22].

3. 6D sigma-models from projective superspace

Up to now we have studied 6D supersymmetric sigma–models using a partially on–shell

formalism which keeps 4D, N = 1 SUSY manifest, being the target space coordinates

described by 4D (anti)chiral superfield. This description is convenient due to the simplicity

of the 4D, N = 1 superspace structures but it has the disadvantage to realize only on–shell

invariance under the whole 6D superpoincaré group.

If we are interested in off–shell 6D superpoincaré invariant formulations, the most

powerful description is harmonic superspace [27]–[29] with eight supercharges which real-

ize 6D, N = 1 SUSY and SU(2) automorphism group. However, as we have emphasized

previously, such constructions and approaches, at the quantum level, are necessarily be-

deviled with harmonic divergences that make higher loop calculations ambiguous. Indeed,

there presently does not exist a proof that such ambiguities can be removed to all orders

of perturbation theory.

An alternative formulation which guarantees manifest off–shell supersymmetry for the-

ories with eight supercharges can be obtained by using the projective superspace tech-

nique [9]–[13]. The two off–shell formulations are strictly related [12] and the main differ-

ence is that the projective superspace approach has only a U(1) subgroup linearly realized,

out of the SU(2) automorphism. The interesting property of projective superspace is that

it naturally provides a reduction to 4D, N = 1 superspace which the harmonic approach

does not admit.

Since in this paper we are interested in studying properties of 6D supersymmetric

sigma–models with target space geometry parametrized by 4D, N = 1 superfields, the

projective superspace approach seems to be the most natural one. A similar analysis has

been recently performed for the 5D case in a series of papers [14].

We start reviewing the definitions and properties of projective superspace in 6D [15, 7].

We focus on the reduction to 4D, N = 1 superspace following the lines of our recent

paper [7] (For conventions we refer the reader to this reference).

The algebra of the N = (1, 0) supercovariant derivatives is

{Daα̃, Dbβ̃} = εabi∂α̃β̃ , (3.1)

where εab is the invariant tensor of the SU(2) automorphism group of the N = (1, 0) algebra

and the derivatives Daα̃ are (1, 0) Weyl spinors satisfying a SU(2)–Majorana condition [1].

Now we extend the 6D superspace parametrized by Z = (xµ, θaα̃) with a projective complex

variable ζ ∈ C∗. In analogy with the 4D case we define the projective supercovariant

– 9 –
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derivatives as

∇α̃(ζ) = ua∇aα̃ , ∆α̃(ζ) = va∇aα̃ ; ua = (1, ζ) , va =

(
−1

ζ
, 1

)
, (3.2)

satisfying

{∇α̃,∇β̃} = 0 , {∆α̃,∆β̃} = 0 , {∇α̃,∆β̃} = −2i∂α̃β̃ . (3.3)

We define superfields living in projective superspace as superfields holomorphic in ζ

Ξ(Z, ζ) =
+∞∑

n=−∞
Ξn(Z)ζn , (3.4)

and satisfying

∇α̃ Ξ(Z, ζ) = 0 . (3.5)

Following Ref. [7] we want to make the structures of 4D superfields manifest. In terms of

4D spinorial coordinates the 6D superspace is parametrized by Z = (xµ, θaα, θ
α̇
a ) and the

algebra (3.1) is rewritten as

{Daα, Dbβ} = εabCαβ∂ , {Da
α̇, D

b
β̇} = εabCα̇β̇∂ , {Daα, D

b
β̇} = δbai∂αβ̇ . (3.6)

It is interesting to note that this is equivalent to the algebra of 4D, N = 2 SUSY with a

complex central charge [20]. In 4D notations, the projective supercovariant derivatives are

∇α̃ =

(∇α

∇α̇

)
=

(
ζDα

1 −Dα
2

D
1α̇

+ ζD
2α̇

)
, ∆α̃ =

(
∆α

∆
α̇

)
=




Dα
1 + 1

ζD
α
2

D
2α̇ − 1

ζD
1α̇


 . (3.7)

Then, from the definition (3.5), projective superfields satisfy

∇α(ζ)Ξ = 0 = ∇α̇(ζ)Ξ ⇐⇒ D2αΞ = ζD1αΞ , D
1
α̇Ξ = −ζD2

α̇Ξ , (3.8)

and the component superfields (3.4) are constrained by

D2αΞn+1 = D1αΞn , D
2
α̇Ξn = −D1

α̇Ξn+1 . (3.9)

The above constraints fix the dependence of the Ξn on half of the Grassmannian coordi-

nates of the superspace. The superfields Ξn can then be considered as superfields living on

a N = 1 superspace with θα = θ1α, θ
α̇

= θ
α̇
1 [9]–[13], [7] and we have a natural reduction

of 6D, N = (1, 0) multiplets to 4D, N = 1 superfields.

In projective superspace the natural conjugation operation combines complex conjugation

with the antipodal map on the Riemann sphere (ζ → −1/ζ) and acts on projective super-

fields as

Ξ̆ =
+∞∑

n=−∞
Ξ̆n ζ

n =
+∞∑

n=−∞
(−1)nΞ−n ζn . (3.10)
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Defining ∆4 = 1
24 εα̃β̃γ̃δ̃∆

α̃∆β̃∆γ̃∆δ̃, manifestly 6D N = (1, 0) SUSY invariant actions

have the general form4 [15, 7]

−
∫
d6x

{∮

C

ζdζ

32πi
∆4 L(Ξ, Ξ̆, ζ)

∣∣∣
}

=

∫
d6xd4θ

{∮

C

dζ

2πiζ
L(Ξ, Ξ̆, ζ)

}
, (3.11)

where L(Ξ, Ξ̆, ζ) is real under the ^-conjugation of (3.10) and C is a contour around the

origin of the complex ζ–plane.

The general classification of multiplets in projective superspace is based on the ana-

lyticity properties of the projective superfields in the ζ–plane [9]–[12] and it is essentially

not affected by the dimensions of the space–time. What different dimensions affect is the

original SUSY algebra with eight supercharges which are used to define the projective su-

perspace. Note that the 6D case is interesting in this regard, six being the largest dimension

in which hypermultiplets with only (0, 1
2 ) degrees of freedom can be defined. Therefore, it

can be considered as the parent (up to issues involving ’twists’ and such dualities) of all

lower dimensional theories with only (0, 1
2) multiplets constructed by dimensional reduc-

tion.

Now, we consider a particular class of examples built using the 6D polar multiplet [7]

defined by (ant)artic superfields focusing on the reduction from projective superfields to

4D, N = 1 superfields degrees of freedom. It is an interesting feature of the 4D and 5D

projective superfields to provide coordinates for natural extensions of rigid N = 1 Kähler

nonlinear sigma–models to the N = 2 cases [13, 14]. Adapting these extensions to the 6D

projective superspace it is straightforward to find the same geometrical structures.

We start by considering a 4D N = 1 rigid supersymmetric sigma–model [30]

∫
d4xd4θ K(ΦI ,Φ

I
) , (3.12)

with K the Kähler potential of the target space Kähler manifold M parametrized by the

scalar components of ΦI (Φ
I
). In analogy to the 4D case we define a 6D N = (1, 0)

sigma–model on M ∫
d6xd4θ

{∮

C

dζ

2πiζ
K(ΥI(ζ), ῨI(ζ))

}
. (3.13)

where K is a function of the 6D (ant)artic projective superfields (ῨI) ΥI defined by the

following power series

ΥI =

+∞∑

n=0

ΥI
n ζ

n , ῨI =

+∞∑

n=0

(−1)nΥ
I
n

1

ζn
. (3.14)

The action (3.13) is invariant under the global U(1) transformation

Υ(ζ) → Υ(eiαζ) ⇐⇒ Υn → einαΥn . (3.15)

4We use the relations ∆α = 2Dα − 1
ζ
∇α, ∆

α̇
= − 2

ζ
D
α̇

+ 1
ζ
∇α̇ which imply that ∆4 = −16 1

ζ2
D2D

2

when it acts on projective superfields and is integrated on the 6D space-time coordinates.
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Due to the truncation of the series, the N = 1 constraints on the component superfields

ΥI
n, Υ

I
n are

Dα̇ΥI
0 = 0 , D

2
ΥI

1 = ∂ΥI
0 ; DαΥ

I
0 = 0 , D2Υ

I
1 = ∂Υ

I
0 , (3.16)

with ΥI
n, Υ

I
n (n > 1) unconstrained N = 1 superfields. The constraints (3.16) define a

set of 6D chiral–nonminimal (CNM) hypermultiplets [7] given by ΥI
0 = ΦI and ΥI

1 = ΣI

extended with an infinite number of auxiliary superfields.

We observe that the action (3.13) has the same properties of the 4D, N = 1 case (3.12).

It is invariant under Kähler transformations

K(Υ, Ῠ) −→ K(Υ, Ῠ) + Λ(Υ) + Λ(Ῠ) , (3.17)

and holomorphic reparametrizations of the Kähler manifold ΥI −→ f I(ΥJ).

The physical superfields

ΥI(ζ)
∣∣∣
ζ=0

= ΦI ,
dΥI(ζ)

dζ

∣∣∣
ζ=0

= ΣI , (3.18)

of the 6D CNM hypermultiplet can be regarded as parameters of the tangent bundle TM
of the Kähler manifold M.

The simplest example concerns a flat one–dimensional manifold withK = ΦΦ in (3.12).

In this case the action (3.13) becomes

∫
d6xd4θ

{∮

C

dζ

2πiζ
ῨΥ

}
=

∫
d6xd4θ

{
ΦΦ− ΣΣ +

+∞∑

n=2

(−1)nΥnΥn

}
. (3.19)

After integrating out the auxiliary superfields Υn, Υn with n > 1, we have
∫
d6xd4θ[ΦΦ−

ΣΣ] which is the action for a free 6D N = (1, 0) CNM hypermultiplet which has been

investigated in [7]. In particular, it is dual to the free CC formulation (2.1).

The analysis of the free system can be extended to the non–trivial cases (3.13). We

need eliminate the auxiliary superfields of the polar hypermultiplet. This can be done

exactly as in the 4D case [13] where we refer the reader for details (see also [31] for recent

applications). The action we are left with has the following form

SCNM (ΦI ,Φ
I
,ΣI ,Σ

I
) =

∫
d6xd4θ

{
K(Φ,Φ)− gIJ(Φ,Φ)ΣIΣ

J

+

+∞∑

p=2

RI1···IpJ1···Jp(Φ,Φ)ΣI1 · · ·ΣIpΣ
J1 · · ·ΣJp

}
, (3.20)

where the tensors RI1···IpJ1···Jp are functions of the Riemann curvature RIJKL and its

covariant derivatives. All the terms contain equal powers of Σ and Σ as a consequence of

the invariance under (3.15). It is worth the mention, that presently, there is in general not

known a closed-form analytic expression for RI1···IpJ1···Jp(Φ,Φ). A solution to this problem

would represent a major advance in understanding this class of problems.
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The action (3.20) describes a class of non–trivial 6D CNM sigma–models which are

guaranteed to be on–shell N = (1, 0) supersymmetric and 6D Lorentz invariant by con-

struction.

So far we have restricted our attention to the polar multiplet as an extension of the

4D chiral multiplet. In particular, we have constructed 6D, N = (1, 0) supersymmetric

sigma–models defined over the tangent bundle TM of a Kähler manifold M. In the

four dimensional case, using the projective superspace, in [13, 14] an extension of the

rigid c–map [32] was proposed which allows us to obtain a 4D, N = 2 hyper-Kähler

manifold starting from a 4D special Kähler geometry. The construction makes use of O(2n)

multiplets in projective superspace. Without giving any detail, we note that, as follows

from our previous discussion, the construction of O(2n) 6D, N = (1, 0) hyper-Kähler sigma

models along the lines of [13] should work straightforwardly since the dimensions of the

space–time should not affect the superspace structures which allow for that construction.

We conclude by noting that our previous analysis covers only a small set of projective

superspace sigma–models. The relevant property of actions of the form (3.13) is that the

auxiliary superfields integration procedure is quite well understood and solved exactly for

some non–trivial examples [13, 31]. It is believed that all the hyper-Kähler metrics can

be derived from the most general polar multiplet action K(Υ, Ῠ, ζ) with a non–trivial

dependence on ζ 5. We expect that the CNM’s would arise naturally also in the general

projective superspace case and the 6D structure would be the same as in our present

analysis.

4. 6D, N = (1, 0) CNM sigma-models

Six–dimensional projective superspace provides a powerful method to build a class of 6D,

N = (1, 0) supersymmetric nonlinear sigma–models whose partially on–shell description

is given in terms of CNM 4D, N = 1 superfields. The projective superspace construction

insures that the resulting CNM sigma–model is on–shell 6D, N = (1, 0) supersymmetric

and we expect the structure of the CNM target space geometry to arise naturally. However,

the action (3.20) for a 6D sigma–model as coming from projective superspace is not the

most general action consistent with the symmetries of the problem.

In this section we investigate the most general class of CNM sigma–models we can

construct directly in terms of 4D superfields and figure out the associated target space

geometry, as done in section 2 for the CC case. In particular, we study how the defining

tensors of the model are constrained by the demand of on–shell 6D, N = (1, 0) SUSY.

Generalizing the free N = (1, 0) CNM action [7], we consider the following ansatz for

the most general (1, 0) CNM sigma–model action, off–shell invariant under 4D SUSY and

the Sl(2,C)×U(1) subgroup of the 6D Lorentz group

S =

∫
d6x

[∫
d4θG

(
Φa,Φ

a
,Σk,Σ

k
)

+

∫
d2θ Pa

(
Φb
)
∂Φa+

∫
d2θ P ā

(
Φ
b
)
∂Φ

a

]
, (4.1)

5We thank Martin Roček for electronic correspondence on this point and for informing us on a

forthcoming proof of this claim [33]. In harmonic superspace it is known that all hyper-Kähler

metrics can be found from the most general q+ hypermultiplet action [27, 29].
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where the superfields Φa, Φ
a
, Σk, Σ

k
are CNM satisfying

Dα̇Φa = 0 , D
2
Σk = Ska (Φ) ∂ Φa ,

DαΦ
a

= 0 , D2Σ
k

= S
k
a(Φ) ∂ Φ

a
. (4.2)

The CNM models emerging from projective superspace correspond to the particular choice

Pa = 0, S = 1 and G constrained to have the form (3.20).

In trying to keep the discussion very general we allow the number of chiral (nc) and

nonminimal (nnm) superfields to be different, we generalize the nonminimal constraint

by the introduction of the tensor Sak(Φ) and add holomorphic terms admitted by the

symmetries of the theory.

Actually, the introduction of a holomorphic term is necessary whenever nnm < nc. As

a particular example we mention the case of one free CC plus one free CNM pairs (nnm = 1,

nc = 3)

S =

∫
d6x

[∫
d4θ [Φ+Φ+ + Φ−Φ−+ ΦΦ−ΣΣ ] +

∫
d2θΦ+∂Φ−+

∫
d2θΦ+∂Φ−

]
, (4.3)

Dα̇Φ± = Dα̇Φ = 0, , DαΦ± = DαΦ = 0 , D
2
Σ = ∂ Φ , D2Σ = ∂ Φ . (4.4)

While the completion to 6D of the CNM (Φ,Σ) kinetic terms is provided by the non–

trivial constraint D
2
Σ = ∂Φ, the completion of the kinetic terms for Φ± makes use of the

holomorphic term, as discussed in [7] and in section 2.

Now, we go back to the general case (4.1, 4.2). In the CC case of section 2 we have first

imposed the restoration of 6D Lorentz invariance on the bosonic part of the action with

the auxiliary fields set on–shell. The requirement of 6D Lorentz invariance constrains the

target space to be hyper-Kähler and this is sufficient to guarantee the on–shell invariance

of the whole action plus 6D, N = (1, 0) supersymmetry. We now follow the same approach

to constrain the tensors G, P, S, P and S of the CNM sigma–models (4.1, 4.2).

Having defined the component fields as in (A.1), we reduce the action (4.1) in compo-

nents. The resulting action is much more complicated than the CC one and we refer the

reader to appendix B for the whole component lagrangian (see eq. (B.1)).

Before performing the auxiliary fields integration, it is useful to write the bosonic

part of (B.1) in a compact form introducing a vectorial/matricial notation. We define the

following matrices (Ga ≡ ∂G
∂Φa )

M ≡
(

0 Gab
Gab 0

)
, N ≡

(
Gar Gar
Gar Gar

)
, H ≡

(
Gkr Gkr
Gkr Gkr

)
, (4.5)

S ≡
(
Skb 0

0 S
k
b

)
, P ≡

(
1 0

0 −1

)
, P± ≡

1

2
(1± P ) , (4.6)

O ≡
(

(GkS
k
b + Pb)(a) − (GkS

k
a + Pa)(b) −SkaGkb

−SkaGkb (GkS
k
b + P b)(a) − (GkS

k
a + P a)(b)

)
. (4.7)
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in terms of which the bosonic component lagrangian becomes

S0f =

∫
d6x

[
− 1

4
∂αα̇AT M ∂αα̇A +

1

8
∂αα̇BT [3H + PHP ] ∂αα̇B

+
1

8
∂αα̇AT [P, [P,N ]] ∂αα̇B + ∂AT P+STHSP− ∂A

+
1

2
FT M F +

1

8
HT [P, [P,H]]H +

1

4
FT [P, [P,N ]]H

+ FT P+O ∂A + FT P−O ∂A + HT P+HSP+ ∂A
+ HT P−HSP− ∂A − FT P+STH ∂B − FT P−STH ∂B
− 1

2
PTαα̇H Pαα̇ +

1

2
PTαα̇ [P,NT ] i∂αα̇A +

1

2
PTαα̇ {P,H} i∂αα̇B

]
.

(4.8)

As usual, the equations of motion for the auxiliary fields are algebraic. Defining the

matrices

P̃ ≡
(
P 0

0 P

)
, G ≡

(
M N

NT H

)
, (4.9)

Z =
(

1
4 [P̃ , [P̃ ,G]]

)−1
, X± = 1

2 (1± P̃ )

(
O −STH

HSP± 0

)
, (4.10)

the solution to the equations of motion for the auxiliary fields read
(
F
H

)
= −ZX+ ∂

(
A
B

)
− ZX− ∂

(
A
B

)
,

Pαα̇ =
1

2
H−1[P,NT ] i∂αα̇A +

1

2
H−1{P,H} i∂αα̇B . (4.11)

Inserting back into (4.8) and defining

C ≡
(
A
B

)
, Y ≡ X T+ZX− −

(
P+STHSP− 0

0 0

)
, (4.12)

K ≡
(
K1 K2

KT2 K3

)
, K1 = M +

1

2
[P,N ]H−1[NT , P ] , (4.13)

K2 =
1

2
[N,P ]H−1{P,H} − 1

4
[P, [P,N ]] , K3 =

1

2
HPH−1PH − 1

2
H , (4.14)

we find the following action for the bosonic physical fields

S = −
∫
d6x

[
1

4
∂αα̇CT K ∂αα̇C + ∂CT Y ∂C

]
. (4.15)

The matrix Y defined in (4.12) is not symmetric. In order to proceed we need symmetrize

it. To this porpose we rewrite (4.15) as

− 1

4

∫
d6x

[
∂αα̇CT K ∂αα̇C + ∂CT K̃ ∂C + ∂CT K̃ ∂C

]
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+
1

2

∫
d6x ∂CT (Y − YT ) ∂C , (4.16)

where we have defined

K̃ ≡ Y + YT = X̃ TZX̃ −
(

1
4 [P, [P,STHS]] 0

0 0

)
, (4.17)

and

X̃ = X+ + X− =

(
O −STH

P+HSP+ + P−HSP− 0

)
. (4.18)

Note that the structure of (4.16) is similar to the one for the CC case (see eq. (2.17)).

Therefore, by imposing the restoration of 6D Lorentz invariance we obtain the following

condition

K = K̃ . (4.19)

As in the CC case we expect the constraint (4.19) to be sufficient to make the second

line of (4.16) a total derivative and, more importantly, to provide on–shell 6D Lorentz

invariance and 6D, N = (1, 0) SUSY of the whole action. Unfortunately, in this case the

direct proof is not straightforward and we have not pursued the calculations up to the very

end.

The constraint (4.19), once written for each component of the two matrices, gives rise

to a system of equations which is much more intricated than (2.20) for the CC case. Up

to now we have not been able to solve it in general. We are going to provide the explicit

solution only in the following example.

Example: 4D target space. We consider the CNM sigma model describing the dy-

namics of one chiral and one nonminimal superfields defined by the action6

S =

∫
d6xd4θ G(Φ,Φ,Σ,Σ) , D

2
Σ = ∂ Φ , D2Σ = ∂ Φ . (4.20)

In this case we can write explicitly all the quantities which enter our equations (4.19). In

particular, K (4.13, 4.14) has component matrices given by

K1 =
1

detH

(
2G2

ΦΣ
GΣΣ GΦΦ(detH) + 2GΦΣGΣΦGΣΣ

GΦΦ(detH) + 2GΦΣGΣΦGΣΣ 2G2
ΣΦ
GΣΣ

)
, (4.21)

K2 =
1

detH

(
2GΦΣGΣΣGΣΣ GΦΣ(GΣΣGΣΣ +G2

ΣΣ
)

GΣΦ(GΣΣGΣΣ +G2
ΣΣ

) 2GΣΦGΣΣGΣΣ

)
, (4.22)

K3 =
1

detH

(
2GΣΣG

2
ΣΣ

GΣΣ(GΣΣGΣΣ +G2
ΣΣ

)

GΣΣ(GΣΣGΣΣ +G2
ΣΣ

) 2G2
ΣΣ
GΣΣ

)
, (4.23)

6We consider the simplest CNM constraint with S(Φ) = 1 since, in the present case, we

can always eliminate the function S(Φ) by a redefinition of the nonminimal superfield,

Σ ≡ S(Φ)Σ′, which implies D
2
Σ′ = ∂Φ.

– 16 –



J
H
E
P
0
9
(
2
0
0
6
)
0
0
6

where (detH) = (GΣΣGΣΣ −G2
ΣΣ

). Furthermore, we have

Z =
1

GΦΦGΣΣ −GΦΣGΣΦ




0 GΣΣ 0 −GΣΦ

GΣΣ 0 −GΦΣ 0

0 −GΦΣ 0 GΦΦ

−GΣΦ 0 GΦΦ 0


 , (4.24)

and K̃ =

(
K̃1 K̃2

K̃T2 K̃3

)
in (4.17) becomes ( k̃ ≡ (GΦΦGΣΣ −GΦΣGΣΦ))

K̃1 =
1

k̃

(
2G2

ΦΣ
GΣΣ GΦΦGΣΣGΣΣ +GΦΣGΣΦGΣΣ

GΦΦGΣΣGΣΣ +GΦΣGΣΦGΣΣ 2G2
ΣΦ
GΣΣ

)
, (4.25)

K̃2 =
1

k̃

(
2GΦΣGΣΣGΣΣ GΦΣ(GΣΣGΣΣ +G2

ΣΣ
)

GΣΦ(GΣΣGΣΣ +G2
ΣΣ

) 2GΣΦGΣΣGΣΣ

)
, (4.26)

K̃3 =
1

k̃

(
2GΣΣG

2
ΣΣ

GΣΣ(GΣΣGΣΣ +G2
ΣΣ

)

GΣΣ(GΣΣGΣΣ +G2
ΣΣ

) 2G2
ΣΣ
GΣΣ

)
, (4.27)

Now, imposing K = K̃ as in (4.19) the only non–trivial condition we obtain is

GΣΣGΣΣ −G2
ΣΣ

= GΦΦGΣΣ −GΦΣGΣΦ . (4.28)

In this case one can check that this condition is sufficient for the second line of (4.16) to

be a total derivative. As we are going to show at the end of section 6 the condition (4.28)

implies that the 4D target space geometry is hyper-Kähler.

It is interesting to note that (4.28) is exactly the same constraint which was found

in [19] from the condition of vanishing one–loop beta–function for a 2D CNM sigma–model

with N = 4 supersymmetry. This implies that the resulting manifold is Ricci-flat and

being four dimensional, it is necessarily hyper-Kähler [34, 19].

5. Duality between 6D, N = (1, 0) CC and CNM sigma-models

One of the very interesting properties of the nonminimal superfield in four, and lower

dimensions, is that it is dual to the chiral multiplet [20]. In [7] we proved that, in flat target

spaces, an analogous duality exists between 6D, N = (1, 0) CC and CNM hypermultiplets.

The same happens for 5D sigma–models [14] . In this section we address the issue of duality

for 6D, N = (1, 0) nonlinear sigma–models.

We start by considering the most general CNM sigma–model (4.1). To build its dual

we implement the CNM constraint (4.2) using a lagrangian multiplier. We then consider

the action

S =

∫
d6xd4θG

(
Φa,Φ

a
,Σk,Σ

k
)

+

∫
d6xd2θ Pa

(
Φb
)
∂ Φa +

∫
d6xd2θ P ā

(
Φ
b
)
∂ Φ

a

−
∫
d6xd4θ

[
Yk

(
D

2
Σk − Ska(Φ) ∂ Φa

)
+ Y k

(
D2Σ

k − Ska(Φ) ∂ Φ
a
)]

, (5.1)
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where Yk, Y k, Σk and Σ
k

are unconstrained complex superfields. Integrating out Yk and

Y k we are back to the original CNM model (4.1, 4.2). On the other hand, varying with

respect to Σk and Σ
k

we obtain the equations of motion (Gk ≡ ∂G
∂Σk )

Gk = D
2
Yk , Gk = D2Y k . (5.2)

We can integrate out Σk and Σ
k

defining new (anti)chiral superfields χk ≡ D
2
Yk, χk ≡

D2Y k and inverting the equations (5.2)

Gk

(
Φa,Φ

a
,Σk,Σ

k
)

= χk =⇒ Σk = Σk
(

Φa,Φ
a
, χk, χk

)
, (5.3)

Gk

(
Φa,Φ

a
,Σk,Σ

k
)

= χk =⇒ Σ
k

= Σ
k
(

Φa,Φ
a
, χk, χk

)
. (5.4)

Substituting back into (5.1) we find the action for the dual CC model

∫
d6x

{∫
d4θ

[
G
(

Φa,Φ
a
,Σk,Σ

k
)
− Σkχk − Σ

k
χk

]∣∣∣∣∣
Σk=Σk(Φa,Φ

a
,χk,χk)

+

∫
d2θ

[(
χkS

k
a + Pa

)
∂ Φa

]
+

∫
d2θ

[(
χkS

k
a + P a

)
∂ Φ

a

]}

≡
∫
d6x

{∫
d4θ G̃

(
ΨI ,Ψ

I
)

+

∫
d2θ QI

(
ΨJ
)
∂ΨI +

∫
d2θQI

(
Ψ
J
)
∂Ψ

I

}
. (5.5)

where we have defined the (anti)chiral superfields (Ψ
I
) ΨI

ΨI =

(
Φa

χk

)
, Ψ

I
=

(
Φ
a

χk

)
, (5.6)

being the coordinates of the dual target space. The Kähler potential G̃ is the Legendre

transform of G in (4.1) and the (anti)holomorphic pieces are expressed in terms of

QI ≡
(
χkS

k
a + Pa

0

)
, QI ≡


 χkS

k
a + P a

0


 . (5.7)

This procedure is very general and allows to map any CNM sigma–model (4.1, 4.2) to a

CC sigma–model (5.5–5.7).

A very interesting subclass of dual CC–CNM pairs are those coming from projective

superspace. Using the prescription just described, given the CNM sigma–model (3.20)

we can find the corresponding on–shell 6D, N = (1, 0) CC sigma–model. Since in the

projective case of section 3 the CNM multiplet is naturally interpreted as parametrizing the

tangent bundle TM of the Kähler manifoldM, once we perform a duality transformation,

the resulting CC coordinates (Φa,Φ
a
, χa, χa) describe the cotangent bundle T ∗M of M.

These manifolds must be hyper-Kähler as requested from the general analysis of the CC

case (see section 2).
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It is important to note that in the projective case as well in the free case, the holo-

morphic term has the particular form (P = 0, S = 1)
∫
d2θ χa∂ Φa =

1

2

∫
d2θ

(
ΨJΩ0

JI

)
∂ΨI , (5.8)

where

Ω0
IJ =

(
0 −δra
δbk 0

)
, (5.9)

is the constant symplectic matrix.

The holomorphic term appearing in (5.5) from the CNM→CC dualization is at most

linear in the dualized (anti)chiral superfield (χk) χk. At a first sight this term seems to

describe only a subclass of models and one may wonder whether the duality map does

indeed generate the entire class of CC sigma–models. To answer this question we now

prove that performing a suitable change of coordinates, any holomorphic term in (2.5) can

be always reduced locally to the canonical form (5.8). Therefore, we can state that the

duality map described above is the most general one and relates the whole class of CNM

models (4.1, 4.2) to the whole class of CC models (2.5).

To this end we consider the most general CC sigma–model (2.5) and search for a

holomorphic change of coordinates

Ψ′a(Ψ) = fa(Ψ) , Ψ
′a

(Ψ) = f
a
(Ψ) , (5.10)

Ψa(Ψ′) = (f−1)a(Ψ′) , Ψ
a
(Ψ
′
) = (f

−1
)a(Ψ

′
) , (5.11)

such that

Qa(Ψ(Ψ′)) ∂Ψa(Ψ′) ≡ 1

2
Ψ′b Ω0

ba ∂Ψ′a +
∂g(Ψ′)
∂Ψ′a

∂Ψ′a , (5.12)

Qa(Ψ(Ψ
′
)) ∂Ψ

a
(Ψ
′
) ≡ 1

2
Ψ
′b

Ω
0
ba ∂Ψ

′a
+
∂g(Ψ

′
)

∂Ψ
′a ∂Ψ

′a
. (5.13)

The terms ∂g(Ψ′)
∂Ψ′a ∂Ψ′a = ∂ g(Ψ′) and ∂g(Ψ

′
)

∂Ψ
′a ∂Ψ

′a
= ∂ g(Ψ

′
), being total derivatives, do not

affect the holomorphic term and can be always admitted in a change of coordinates.

The previous equations are equivalent to the following differential equations for the

functions fa and f
a

1

2
f c Ω0

cb

∂f b

∂Ψa
+

∂g

∂Ψa
= Qa , (5.14)

1

2
f
c
Ω

0
cb

∂f
b

∂Ψ
a +

∂g

∂Ψ
a = Qa , (5.15)

and also

(
Qd(c) −Qc(d)

) ∂Ψc

∂Ψ′a
∂Ψd

∂Ψ′b
= Ωcd

∂Ψc

∂Ψ′a
∂Ψd

∂Ψ′b
= Ω0

ab , (5.16)

(
Qd(c) −Qc(d)

) ∂Ψ
c

∂Ψ
′a
∂Ψ

d

∂Ψ
′b = Ωcd

∂Ψ
c

∂Ψ
′a
∂Ψ

d

∂Ψ
′b = Ω

0
ab , (5.17)
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where the components of the holomorphic two–form Ω and Ω (2.19) of the hyper-Kähler

manifold appear. The functions Qa transform as the components of a holomorphic one–

form Q = Qa dΨa and the local change of coordinates described by the previous equations

is such that the closed, nondegenerate, covariantly constant two–form Ω = −∂ Q is mapped

to the canonical constant symplectic two–form Ω0. The hyper-Kähler manifold is a complex

symplectic manifold with respect to the holomorphic two–form Ω. According to Darboux

theorem we can always choose a particular system of coordinates7 [35, 23, 36] for which

Ω = Ω0 and Ω = Ω
0
. This insures that locally our previous equations are always soluble.

The discussion above means that locally the 6D CC sigma–models can be always

described, after the appropriate change of coordinates, by a holomorphic term having the

canonical form (5.8). In the symplectic coordinates it is natural to divide the coordinates

as in (5.6) and all the CC hyper-Kähler sigma–models in the symplectic basis reduce to

S =

∫
d6xd4θK ′(Φ,Φ, χ, χ) +

∫
d6xd2θ χI ∂ ΦI +

∫
d6xd2θ χI ∂ Φ

I
, (5.18)

with K ′ the Kähler potential in the symplectic basis.

So far we have described how to dualize CNM models obtaining CC sigma–models.

Now, we want to proceed in the other way around and construct the CNM dual of a

general 6D, N = (1, 0) hyper-Kähler CC sigma–model. Once we have written it in Darboux

coordinates as in (5.18), the CC→CNM dualization goes straightforwardly.

We solve the kinematical (anti)chirality constraints of (χI ) χI in terms of an uncon-

strained complex superfield (Y I) YI which plays a role similar to the Lagrange multiplier

of (5.5)

χI = −D2
YI , χI = −D2Y I . (5.19)

The action (5.18) takes the form

∫
d4θ

[
K ′(Φ,Φ, χ, χ) − YI ∂ ΦI − Y I ∂ Φ

I

]
. (5.20)

Varying with respect to (Y I) YI we obtain

D
2 ∂K ′

∂χI
= ∂ ΦI , D2 ∂K

′

∂χI
= ∂ Φ

I
. (5.21)

Therefore, the superfields

ΣI ≡ ∂K ′

∂χI
, Σ

I ≡ ∂K ′

∂χI
. (5.22)

satisfy the linear constraints in (4.2) with S = 1. We invert these relations to determine χI
and χI as functions of (Φ,Φ,Σ,Σ). Substituting back into the action (5.20) we find that

7See section five of [36] for an interesting discussion on Darboux coordinates in the case of

generalized Kähler geometry. In their language, our (anti)holomorphic two-forms Ω and Ω

are those which define the inverse of a Poisson structure on the manifold.
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the CC sigma–model (5.18) is dual to the CNM sigma–model defined by

S =

∫
d6xd4θ

[
K ′
(

ΦI ,Φ
I
, χI , χI

)
− ΣIχI − Σ

I
χI

]∣∣∣∣∣
χI=χI(ΦI ,Φ

I
,ΣI ,Σ

I
)

=

∫
d6xd4θ K̃ ′

(
ΦI ,Φ

I
,ΣI ,Σ

I
)

, (5.23)

where K̃ ′ is the Legendre transform with respect to χ and χ of the Kähler potential K ′.
We have then found that all the CC sigma–models of section 2 written in a canonical

symplectic system of coordinates are dual to CNM models.

So far we have considered maximal duality maps, i.e. trasformations where all the

nonminimal multiplets are dualized to chirals and viceversa. However, one can consider

more general situations where the duality map involves only a subset of superfields. These

partial dualizations can be used to map a CNM model with nc 6= nnm to a model with

nc = nnm. This is possible every time nc − nnm = 2n.

On–shell pairs of dual CC–CNM sigma–models have the same dynamics. This means

that the target space described by the two sigma–models is the same. Therefore, on–shell

the CNM model describes a hyper-Kähler manifold as well. In particular, as also noted

in [19], the duality Legendre transform acts on the manifold as a change of coordinates

which is in general non–holomorphic (not preserving the complex structures).

6. 6D, N = (1, 0) CNM sigma-models (II): an indirect approach from its

dual CC model

In section 4 we have studied the most general CNM sigma–model defined by our ansatz (4.1,

4.2) and worked out the constraints on its defining functions as coming from the direct

restoration of 6D Lorentz invariance of the on–shell action. Unfortunately, as already

noticed, the system of constraints which we obtain cannot be solved in general and we are

not able to easily read from them the geometrical properties of the target space.

In the previous section we have discussed the duality properties between CC and CNM

sigma models. This opens the possibility to find the set of constraints satisfied by the CNM

sigma–model (4.1, 4.2) by following an alternative, indirect approach: Since we know the

precise relation between the geometric tensors of the CNM model and of its dual we can

infer the constraints of the CNM case from the hyper-Kähler condition (2.20) for the dual

CC model.

Given the general CNM (4.1, 4.2) we can find the components of the two–forms Ω and

Ω for the CC dual (5.5)

ΩIJ = QJ(I) −QI(J) =



(
Pb(a) − Pa(b)

)
+ χs

(
Ssb(a) − Ssa(b)

)
− Sra

Skb 0


 , (6.1)

ΩIJ = QJ(I) −QI(J) =




(
P b(a) − P a(b)

)
+ χs

(
S
s

b(a) − S
s

a(b)

)
− Sra

S
k

b 0


 . (6.2)
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To write the hyper-Kähler conditions (2.20) we need find the expression of the Kähler

metric G̃II = ∂I∂I G̃ of the dual CC geometry in terms of the tensors in the CNM basis.

Exploiting the fact that the Kähler potential is the Legendre transform of G, we find

G̃aa = ∂a

[
Ga +Gk

∂Σk

∂Φa
+Gk

∂Σ
k

∂Φa
− χk

∂Σk

∂Φa
− χk

∂Σ
k

∂Φa

]

= Gaa +Gak
∂Σk

∂Φ
a

+Gak
∂Σ

k

∂Φ
a

= Gaa +Gak
∂Σk

∂Φa
+Gak

∂Σ
k

∂Φa
, (6.3)

G̃ka = ∂kGa = Gra
∂Σr

∂χk
+Gar

∂Σ
r

∂χk

= ∂a

[
Gr

∂Σr

∂χk
+Gr

∂Σ
r

∂χk
− ∂Σr

∂χk
χr −Σk − ∂Σ

r

∂χk
χr

]
= − ∂Σk

∂Φ
a

, (6.4)

G̃ k
a = Gar

∂Σr

∂χk
+Gar

∂Σ
r

∂χk
= − ∂Σ

k

∂Φa
, (6.5)

G̃kk = −∂Σk

∂χk
= − ∂Σ

k

∂χk
. (6.6)

Using the defining equations (5.3, 5.4) of the CNM Legendre transform we have

H =



Gkr Gkr

Gkr Gkr


 =




∂χk
∂Σr

∂χk

∂Σ
r

∂χk
∂Σr

∂χk

∂Σ
r


 , (6.7)

H−1 ≡



Hkr Hkr

Hkr Hkr


 =




∂Σk

∂χr
∂Σk

∂χr

∂Σ
k

∂χr
∂Σ

k

∂χk


 . (6.8)

We are then able to write the metric of the CC Kähler target space in terms of tensors of

the original CNM model

G̃IJ =



G̃ab G̃

r
a

G̃k
b
G̃kr


 , (6.9)

with

G̃aa = Gaa −Gak(HkrGra +HkrGra)−Gak(HkrGra +HkrGra) , (6.10)

G̃ k
a = GarH

rk +GarH
rk , (6.11)

G̃ka = GraH
rk +GarH

rk , (6.12)

G̃kk = −Hkk . (6.13)

In a matricial form as (4.5, 4.6) and (6.7, 6.8), the dual CC Kähler metric (6.9) can be

written as

G̃ = P+

(
M − NH−1NTP−

)
P2 −

1

4
P2[P, [P,H−1]]P− +

1

4
[P, [P,NH−1]] , (6.14)
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where

P2 ≡
(

0 1

1 0

)
. (6.15)

At this point we impose the hyper-Kähler condition (2.20)

G̃II = −ΩIJ G̃
JJ ΩJI ⇐⇒ G̃II ΩIJ G̃JJ = −ΩIJ . (6.16)

These equations can be re-interpreted as conditions on the CNM tensors, remembering that

χk = Gk(Φ,Φ,Σ,Σ). Therefore, inverting the metric G̃IJ or the form ΩIJ one can write

explicitly the conditions on the tensors of the original CNM sigma–model which insures

on–shell 6D Lorentz and N = (1, 0) SUSY on both sides of the duality map.

We have not investigated extensively the constraints (6.16) for the generic sigma–

model (4.1, 4.2) yet. However, we can make few preliminary observations.

So far, we have not specified the number of coordinates of the target space described

respectively by chiral Φa and nonminimal Σk (or dual chiral χk) superfields. In order to

understand if there are restrictions on the number of coordinates we analyse the tensors

ΩIJ , ΩIJ (6.1, 6.2). To have a well–defined dual CC model with on–shell 6D, N = (1, 0)

SUSY we know that ΩIJ has to provide a local parametrization of the components of the

nondegenerate closed holomorphic two–form of a hyper-Kähler manifold. In particular, the

matrix ΩIJ has to be invertible, i.e. its kernel has to be trivial. Observing the explicit

expression of ΩIJ (6.1) in the case under consideration it is clear that the number of

coordinates described by nonminimal superfields nnm has to be equal or less as the number

of chirals nc (nnm ≤ nc). In fact, if nnm > nc then Ska would certainly have a non–trivial

kernel and so would ΩIJ (6.1).

We first consider the case nnm = nc ≡ n. Since ΩIJ has to be invertible, we require

Ska (Φ) to have a trivial kernel and an inverse Sak(Φ) exists such that Skb S
b
r = δkr , SarS

r
b = δab .

If Ska is invertible, it is possible to simplify the CC dual (5.5) by doing the holomorphic

affine–like χk, χk superfield redefinition

χ̃k ≡ χr S
r
a(Φ) δak + Pa(Φ) δak , χ̃k ≡ χr S

r
a(Φ) δa

k
+ P a(Φ) δa

k
, (6.17)

χk = χ̃r δ
r
b S

b
k(Φ) − Pa(Φ) δak , χk = χ̃r δ

r
b
S
b
r(Φ) − P a(Φ) δa

k
, (6.18)

keeping the Φ, Φ coordinates fixed. In the (Φ,Φ, χ̃k, χ̃k) target space coordinates the CC

sigma–model which we find is in a symplectic basis where the holomorphic term is (5.8). If

we now dualize the resulting CC sigma–model with respect to the new tilde coordinates, we

find a CNM sigma–model where Pa ≡ 0 and Ska (Φ) ≡ δka . This means that, with nnm = nc
all the consistent 6D, N = (1, 0) CNM sigma–models can be described by Pa = 0 and

Ska (Φ) = δka . This is clearly what we expect from the discussion of section 5. We then focus

on this particular case.

With Pa = 0 and Ska = δka , ΩIJ and ΩIJ become the constant symplectic matrix and

its inverse, respectively (also ΩIJ = P2P and ΩIJ = −P2P = PP2). The hyper-Kähler
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condition on the CC dual sigma–model then reduces to

0 = Hkkδak(GapH
pr + GapH

pr) − Hkrδak(GapH
pk + GapH

pk) , (6.19)

− δk
b

= Hkkδbk

[
Gbb −Gbs(HsrGrb +HsrGrb)−Gbs(HsrGrb +HsrGrb)

]

+ (GasH
sk + GasH

sk)δak(GbpH
pk + GbpH

pk) , (6.20)

0 =

[
Gaa −Gas(HsrGra +HsrGra)

−Gas(HsrGra +HsrGra)

]
δak(GbpH

pk + GbpH
pk)

−
[
Gab −Gas(HsrGrb +HsrGrb)

− Gas(H
srGrb +HsrGrb)

]
δak(GapH

pk + GapH
pk) , (6.21)

or in the matricial form

P2P = G̃T P2P G̃ . (6.22)

where G̃ is given by (6.14).

If nnm < nc and nnm + nc = 2n, we expect that under a set of partial dualities the

CNM model can be mapped to a CNM model with nnm = nc, as discussed in section 5.

Therefore, the previous analysis still works. On the other hand, if nnm + nc = 2n+ 1 the

theory is not well-defined since an odd number of target space coordinates is incompatible

with the hyper-Kähler condition.

Example: 4D target space We now analyse the 4D target space example of section

4 (see the action (4.20)) using the indirect approach of this section. The dual CC Kähler

metric G̃IJ (6.9) is

G̃ΦΦ = GΦΦ − 1
detH

[
GΦΣ(GΣΣGΣΦ −GΣΣGΦΣ) +GΦΣ(GΣΣGΦΣ −GΣΣGΣΦ)

]
, (6.23)

G̃ Σ
Φ = 1

detH

[
GΦΣGΣΣ −GΦΣGΣΣ

]
, (6.24)

G̃Σ
Φ

= 1
detH

[
GΣΦGΣΣ −GΦΣGΣΣ

]
, (6.25)

G̃ΣΣ = 1
detH GΣΣ . (6.26)

Imposing the hyper-Kähler condition (6.16) with ΩIJ = Ω0
IJ =

(
0 −1

1 0

)
, the only

constraint on G(Φ,Φ,Σ,Σ) which arises is (4.28). This proves that, at least in the case of a

four dimensional target space geometry, our direct and indirect approaches are equivalent.

Furthermore, from the present discussion it follows that (4.28) is effectively a hyper-Kähler

condition as we claimed at the end of section 4.
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7. Conclusions

In this work, we have endeavored to open a discussion of 6D supersymmetric nonlinear

sigma-models. Our specific techniques involved utilizing 4D superfields, thus keeping man-

ifest this degree of supersymmetry, that permit full 6D Lorentz invariance to be realized

only on-shell.

We have demonstrated, as might have been expected, that the use of two chiral su-

perfields to represent the 6D N = (1, 0) hypermultiplet provides the simplest manner in

which to describe such actions. This formulation has the interesting feature that to write

its action requires in addition to a Kähler potential, a holomorphic U(1)-bundle connec-

tion. The 6D Lorentz invariance imposes a condition that relates the Kähler potential to

the connection in such a way that the sigma-model manifold must be hyper-Kähler. The

field strength of the holomorphic U(1)-bundle connection has been found to be related to

the well-known triplet of covariantly constant complex structures. We have also given a

brief introduction to the use of projective superspace for analysis of this class of models. As

the polar multiplets of projective superspace necessarily lead to combinations of chiral and

nonmininal multiplets (CNM’s) making their appearance, we finally have studied this class

of models by an analysis based directly on the introduction of CNM actions without the

use of projective superspace. In this last set of activities, general conditions were derived,

but owing to the sheer algebraic complexity, we have shown that there exist well define

special cases which demonstrate the equivalence of the CNM description, where possible.
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A. Some definitions and formulae

In analogy to the four dimensional case [16 – 18] we define the component fields of the CNM

multiplet (4.2) as

Aa = Φa| , ψaα = DαΦa| , F a = D2Φa| ,

A
a

= Φ
a| , ψ

a
α̇ = Dα̇Φ

a| , F
a

= D
2
Φ
a| ,

Bk = Σk| , ζ
k
α̇ = Dα̇Σk| , Hk = D2Σk| ,

ρkα = DαΣk| , pkαα̇ = Dα̇DαΣk| , β
k
α̇ = 1

2D
αDα̇DαΣk| .

B
k

= Σ
k| , ζkα = DαΣ

k| , H
k

= D
2
Σ
k| ,

ρkα̇ = Dα̇Σ
k| , pkαα̇ = −DαDα̇Σ

k| , βkα = 1
2D

α̇
DαDα̇Σ

k| . (A.1)
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From the bosonic components we define the vectors

A ≡
(
Aa

A
a

)
, B =

(
Bk

B
k

)
, (A.2)

F ≡
(
F a

F
a

)
, H ≡

(
Hk

H
k

)
, Pαα̇ ≡

(
pkαα̇
pkαα̇

)
. (A.3)

B. 6D CNM sigma–model action in components

Now we give the expression of the action in components for the general CNM sigma–model

described by (4.1) with constraints (4.2). By non-trivial dimensional reduction we can

obtain component actions in lower dimensions. In particular, the sigma–model actions we

obtain can contain non–trivial mass and potential terms coming from the CNM constraint.

These actions generalize sigma–models studied in [16, 17] where only the standard non-

minimal constraint D
2
Σ = 0 was considered. Our more general models are relevant for a

CNM description of SUSY theories with non-trivial central charges.

With the components defined as (A.1), the action of the CNM sigma–model (4.1, 4.2)

is

(
Pb(a) − Pa(b)

)(
F a∂Ab +

1

2
ψbα∂ ψaα

)
+

1

2

(
Pb(ac) − Pa(bc)

)
(∂Aa)ψbαψcα

+
(
P b(a) − P a(b)

)(
F
a
∂ A

b
+

1

2
ψ
bα̇
∂ ψ

a
α̇

)
+

1

2

(
P b (ac) − P a (bc)

)
(∂ A

a
)ψ

bα̇
ψ
c
α̇

+GkS
k
a(b)F

b∂ Aa +GkS
k
a∂F

a +GkS
k
a(b)ψ

bα∂ ψaα +GkS
k
a(bc)(∂A

a)ψbαψcα

+GkS
k
a(b)F

b
∂ A

a
+GkS

k
a∂ F

a
+GkS

k
a(b)ψ

bα̇
∂ ψ

a
α̇ + GkS

k
a(bc)(∂ A

a
)ψ

bα̇
ψ
c
α̇

+Gak

[
Skb F

a∂ Ab + Skb ψ
aα∂ ψbα + Skb(c)(∂ A

b)ψaαψcα

]

+Gak

[
S
k
bF

a
∂ A

b
+ S

k
bψ

aα̇
∂ ψ

b
α̇ + S

k
b(c)(∂ A

b
)ψ

aα̇
ψ
c
α̇

]

+Gkr

[
SkaH

r∂ Aa +
1

2
∂αα̇Bk∂αα̇B

r + pkαα̇i∂αα̇B
r − 1

2
pkαα̇prαα̇ − ζ

kα̇
β
r
α̇

+ ρrα
(1

2
i∂αα̇ζ

kα̇
+ Ska∂ ψ

a
α + Ska(b)(∂ A

a)ψbα

)]

+Gkr

[
S
k
aH

r
∂ A

a
+

1

2
∂αα̇B

k
∂αα̇B

r − pkαα̇i∂αα̇Br − 1

2
pkαα̇prαα̇ − ζkαβrα

+ ρrα̇
(1

2
i∂αα̇ζ

kα + S
k
a∂ ψ

a
α̇ + S

k
a(b)(∂ A

a
)ψ

b
α̇

)]

+Gaa

[
− 1

2
∂αα̇A

a
∂αα̇A

a − 1

2
ψ
a
α̇i∂

αα̇ψaα −
1

2
ψaαi∂

αα̇ψ
a
α̇ + F

a
F a

]
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+Gkk

[
1

2
∂αα̇B

k
∂αα̇B

k +
1

2
ζ
k
α̇i∂

αα̇ζkα +
1

2
ζkαi∂

αα̇ζ
k
α̇ − pkαα̇pkαα̇ + SkaS

k
a(∂ A

a
)(∂ Aa)

+ H
k
Hk + Skaζ

kα∂ ψaα + Ska(b)(∂ A
a)ζkαψbα − βkαρkα + S

k
aζ
kα̇
∂ ψ

a
α̇

+ S
k
a(b)(∂ A

a
)ζ
kα̇
ψ
b
α̇ − β

kα̇
ρkα̇

]

+Gak

[
1

2
∂αα̇B

k
∂αα̇A

a − pkαα̇i∂αα̇Aa +H
k
F a − ψaαβkα −

1

2
ρkα̇i∂

αα̇ψaα

]

+Gka

[
1

2
∂αα̇A

a
∂αα̇B

k + pkαα̇i∂αα̇A
a

+ F
a
Hk − ψaα̇βkα̇ −

1

2
ρkαi∂

αα̇ψ
a
α̇

]

+Gakk

[
i

2
(∂αα̇Aa)ζkαζ

k
α̇ +

i

2
(∂αα̇Aa)ρkαρ

k
α̇ + F aζ

kα̇
ρkα̇ +H

k
ψaαρkα + Skb (∂ Ab)ψaαζkα

+ pkαα̇ψaαζ
k
α̇ −

i

2
(∂αα̇Bk)ψaαρ

k
α̇ + pkαα̇ψaαρ

k
α̇

]

+Gkak

[
i

2
(∂αα̇A

a
)ζ
k
α̇ζ

k
α +

i

2
(∂αα̇A

a
)ρkα̇ρ

k
α + F

a
ζkαρkα +Hkψ

aα̇
ρkα̇ + S

k
b (∂ A

b
)ψ

aα̇
ζ
k
α̇

− pkαα̇ψ
a
α̇ζ

k
α −

i

2
(∂αα̇B

k
)ψ

a
α̇ρ

k
α − pkαα̇ψ

a
α̇ρ

k
α

]

+Gkrk

[
i

2
(∂αα̇Br)ζ

k
α̇ζ

k
α +

i

2
(∂αα̇Br)ρkα̇ρ

k
α +

1

2
S
k
a(∂A

a
)ζ
kα̇
ζ
r
α̇ + prαα̇ρkαρ

k
α̇ + pkαα̇ρkαζ

r
α̇

+ prαα̇ζkαζ
k
α̇ +

i

2
(∂αα̇B

k
)ρkαζ

r
α̇ + Ska (∂ Aa)ρrαζkα +Hrρkα̇ζ

k
α̇ +

1

2
H
k
ρkαρrα

]

+Gkkr

[
i

2
(∂αα̇B

r
)ζkαζ

k
α̇ +

i

2
(∂αα̇B

r
)ρkαρ

k
α̇ +

1

2
Ska (∂Aa)ζkαζrα + prαα̇ρkαρ

k
α̇ + pkαα̇ζrαρ

k
α̇

+ prαα̇ζkαζ
k
α̇ +

i

2
(∂αα̇Bk)ρkα̇ζ

r
α + S

k
a(∂ A

a
)ρrα̇ζ

k
α̇ +H

r
ρkαζkα +

1

2
Hkρkα̇ρrα̇

]

+Gakr

[
(i∂αα̇Br)ζ

k
α̇ψ

a
α +

i

2
(∂αα̇Aa)ρkαζ

r
α̇ + Skb (∂Ab)ψaαρrα +

1

2
F aζ

kα̇
ζ
r
α̇ + prαα̇ψaαζ

k
α̇

]

+Gakr

[
(i∂αα̇B

r
)ζkαψ

a
α̇ +

i

2
(∂αα̇A

a
)ρkα̇ζ

r
α + S

k
b (∂ A

b
)ψ

aα̇
ρrα̇ +

1

2
F
a
ζkαζrα + prαα̇ζkαψ

a
α̇

]

+Gkrs

[
1

2
Hkζ

rα̇
ζ
s
α̇ +

i

2
(∂αα̇Bk)ζ

r
α̇ρ

s
α + pkαα̇ρrαζ

s
α̇ +

1

2
Ska(∂Aa)ρrαρsα

]

+Gkrs

[
1

2
H
k
ζrαζsα +

i

2
(∂αα̇B

k
)ζrαρ

s
α̇ + pkαα̇ζrαρ

s
α̇ +

1

2
S
k
a(∂ A

a
)ρrα̇ρsα̇

]

+
1

2
GabkS

k
c (∂Ac)ψaαψbα +

1

2
GabkS

k
c (∂ A

c
)ψ

aα̇
ψ
b
α̇
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+Gaba

[
i

2
(∂αα̇Aa)ψbαψ

a
α̇ +

1

2
F
a
ψaαψbα

]
+Gaab

[
i

2
(∂αα̇A

a
)ψ

b
α̇ψ

a
α +

1

2
F aψ

aα̇
ψ
b
α̇

]

+Gaka

[
i

2
(∂αα̇Bk)ψ

a
α̇ψ

a
α + (i∂αα̇A

a
)ζ
k
α̇ψ

a
α +

i

2
(∂αα̇Aa)ρkαψ

a
α̇ + F aζ

kα̇
ψ
a
α̇

+ F
a
ψaαρkα + pkαα̇ψaαψ

a
α̇

]

+Gaak

[
i

2
(∂αα̇B

k
)ψaαψ

a
α̇ + (i∂αα̇Aa)ζkαψ

a
α̇ +

i

2
(∂αα̇A

a
)ρkα̇ψ

a
α + F

a
ζkαψaα

+ F aψ
aα̇
ρkα̇ + pkαα̇ψaαψ

a
α̇

]

+Gabk

[
1

2
H
k
ψaαψbα +

1

2
(∂αα̇Ab)ψaαρ

k
α̇

]
+Gkab

[
1

2
Hkψ

aα̇
ψ
b
α̇ +

i

2
(∂αα̇A

b
)ψ

a
α̇ρ

k
α

]

+Gkra

[
Hrψ

aα̇
ζ
k
α̇ +

i

2
(∂αα̇A

a
)ζ
k
α̇ρ

r
α +

i

2
(∂αα̇Br)ψ

a
α̇ρ

k
α + prαα̇ρkαψ

a
α̇ +

1

2
F
a
ρkαρrα

]

+Gakr

[
H
r
ψaαζkα +

i

2
(∂αα̇Aa)ζkαρ

r
α̇ +

i

2
(∂αα̇B

r
)ψaαρ

k
α̇ + prαα̇ψaαρ

k
α̇ +

1

2
F aρkα̇ρrα̇

]

+
1

4
Gabab ψ

aαψbα ψ
aα̇
ψ
b
α̇ +

1

2
Gakab ψ

aαρkα ψ
aα̇
ψ
b
α̇ +

1

2
Gabak ψ

aαψbα ψ
aα̇
ρkα̇

+Gakak

(
ψaαζkα ζ

kα̇
ψ
a
α̇ + ψaαρkα ψ

aα̇
ρkα̇

)
+

1

2
Gabka ψ

aαψbα ψ
aα̇
ζ
k
α̇

+
1

2
Gaabk ψ

aαζkα ψ
aα̇
ψ
b
α̇ + Gaakr ψ

aαζkα ψ
aα̇
ρrα̇ + Gakra ψ

aαρkα ζ
rα̇
ψ
a
α̇

+
1

4
Gabkr ψ

aαψbα ζ
kα̇
ζ
r
α̇ +

1

4
Gabkr ζ

kαζrα ψ
aα̇
ψ
b
α̇ +

1

2
Gakrs ψ

aαρkα ζ
rα̇
ζ
s
α̇

+
1

2
Gakrs ζ

kαζrα ψ
aα̇
ρsα̇ +

1

4
Gkrst ρ

kαρrα ζ
sα̇
ζ
t
α̇ +

1

4
Gkrst ζ

kαζrα ρ
sα̇ρtα̇

+Gakrk

(
ψaαρkα ζ

rα̇
ρkα̇ +

1

2
ψaαζkα ζ

kα̇
ζ
r
α̇

)
+

1

2
Gabkk ψ

aαψbα ζ
kα̇
ρkα̇

+
1

2
Gkabk ρ

kαζkα ψ
aα̇
ψ
b
α̇ + Gkakr

(
ρkαζkα ψ

aα̇
ρrα̇ +

1

2
ζkαζrα ψ

aα̇
ζ
k
α̇

)

+Gakkr

(
ψaαζkα ζ

kα̇
ρrα̇ +

1

2
ψaαρkα ρ

kα̇ρrα̇

)
+

1

4
Gabkr ψ

aαψbα ρ
kα̇ρrα̇

+
1

4
Gkrab ρ

kαρrα ψ
aα̇
ψ
b
α̇ + Gkrak

(
ρkαζkα ζ

rα̇
ψ
a
α̇ +

1

2
ρkαρrα ψ

aα̇
ρkα̇

)

+
1

2
Gkrsk

(
ρkαζkα ζ

rα̇
ζ
s
α̇ + ρkαρrα ζ

sα̇
ρkα̇

)
+

1

2
Gkrsa ρ

kαρrα ζ
sα̇
ψ
a
α̇
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+
1

2
Gakrs ψ

aαζkα ρ
rα̇ρsα̇ +

1

2
Gkkrs

(
ζkαζrα ζ

kα̇
ρsα̇ + ρkαζkα ρ

rα̇ρsα̇

)

+Gkrkr

(
ρkαζkα ζ

rα̇
ρrα̇ +

1

4
ρkαρrα ρ

kα̇ρrα̇ +
1

4
ζkαζrα ζ

kα̇
ζ
r
α̇

)
. (B.1)
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